# Breast cancer screening- how does it work and how can it be improved?

#### Stephen W. Duffy Wolfson Institute of Preventive Medicine





## Mammographic screening

- Screening for breast cancer generally uses mammography (X-ray of the breasts)
- The aim is to find cancers which are too small to be felt and are at an early and readily treatable stage
- How do we know it works?

#### **Randomised Trials**

- One group of healthy women is allocated at random to be invited to screening (study group) or not (control group)
- The women are followed up for death from breast cancer
- If the screening works, there will be fewer breast cancer deaths in the study group

# Example- Swedish Two-County Trial

| Group   | Number of<br>women | Breast cancer deaths | Rate/1000 |
|---------|--------------------|----------------------|-----------|
| Study   | 77080              | 319                  | 4.14      |
| Control | 55985              | 334                  | 5.97      |

Rate/1000 (study group) = 1000 x 319/77080 = 4.14 Relative risk = 4.14/5.97= 0.69, a 31% mortality reduction

#### RR's breast cancer mortality, Mammography RCT's



Overall, 20% reduction in breast cancer mortality associated with invitation to screening mammography

#### What is the effect of being screened?

- 20% is the intention to treat result
  - Women who do not attend screening are included in the study group
  - Women who obtain screening outside of the study are included in the control group
- The International Agency for Research on Cancer concluded that the effect of actually receiving screening was closer to a 35-40% breast cancer mortality reduction

#### Absolute benefit

- In the Swedish Two-County Trial, 141
  breast cancer deaths were prevented by the 3-4 rounds of screening in the study group
- Of the 77080 women, on average 65518 (85%) attended for screening
- Thus we need to screen 65518/141 =465 women to save one life

## How does screening work?

- In principle breast screening works by detecting the cancer while it is still

   small
  - confined to the breast, i.e. has not invaded the regional lymph nodes
- Does this hold in practice?

# RR (mortality) and RR (node positive cancer)

| Study      | RR<br>(mortality) | RR (node positive) |
|------------|-------------------|--------------------|
| HIP        | 0.78              | 0.85               |
| Malmo      | 0.78              | 0.83               |
| 2-county   | 0.69              | 0.73               |
| Edinburgh  | 0.78              | 0.81               |
| Stockholm  | 0.90              | 0.82               |
| NBSS-1     | 0.97              | 1.20               |
| NBSS-2     | 1.02              | 1.09               |
| Gothenburg | 0.79              | 0.80               |

#### How *CAN* screening work?

- Presumably, screening can only prevent deaths from cancers detected by the screening
- In principle it does not prevent deaths from cancers diagnosed between screens or in women who do not attend for screening
- Cancers detected by screening may well be a minority

# Very large effect on screendetected tumours

- In the two-county study for screen-detected vs clinical tumours, there was a 68% reduction in fatality, adjusted for lead time
- In the UK screening programme, around 40% of tumours are screen-detected, 30% occur between screens and 30% in non-attenders
- Thus one would expect a mortality reduction of 68% of 40%, i.e. 27%

## Possible improvements

- Use of ultrasound and other imaging technologies
- Digital mammography
- Computer-Aided Detection
- Individually-tailored screening based on
  - Breast density
  - Risk
- One day there will be a blood test

## **Evaluating improvements**

- Two-county result based on screening for 6-7 years and 20-year follow-up
- With the pace of technology, we need more rapid evaluation
- We need a more flexible ethical and governance environment